DESIGN AND COMMUNICATION GRAPHICS SYLLABUS MAP | SYLLABUS CONTENT | TIME DEPTH | | | | | | | |--|--|--|---|--|--|---|--| | Projection Systems | Planes of Reference Orthographic Proj. 1st Auxiliary Views True length & shape | Proj of right solids Solids in contact Sectional views (1) Pictorial Projection | Oblique planesSectional views (2)Intersection of solids | 2nd Auxiliary views Intersection of solids | 3rd Angle Projection Cube and tetrahedron Solids in Contact | Axonometric Projection- Isometric, diametric & trimetric | Perspective projection-Vanishing points for inclined lines | | Plane Geometry | Construction of plane
figuresIntroduction to loci | Loci as a problem solving toolTangents | Loci as a problem solving tool | Plane figures Loci Tangents | Plane figuresLociTangents | Plane figures Loci Tangents | Plane figuresLociTangents | | Conic Sections | Orthographic projections yielding conic sections | • Horizontal/vertical sections of cone & sphere | • Construct conic sections as plane loci – eccentricity, foci, etc | •Derive directrices, foci
vertices and eccentricity
from solid section | Tangents – properties Construct conics in a rectangle | Construction of a
double hyperbola
given various criteria | Centre of curvature and evolute for conic sections | | Descriptive Geometry of Lines and Planes | Simply inclined planes Angle of inclination – lines and planes | • Sections with vertical /horizontal/ simply inclined planes | Oblique planes/tracesTrue inclinations -
dihedral angle | Lines of intersectionDihedral angle between
planes/surfaces | • Sectioning of solids by oblique planes | Laminar surfaces
defined by spatial co-
ordinates | •Spatial relationship
between Skew lines | | Intersection & Development of Surfaces | •Develop/envelop
surfaces of right solids
and their fustra | • Intersection of lines and planes | Intersection of
lines/planes with
planes/curved
surfaces | prisms, pyramids,
spheres, their fustra
and composite solids | •Locating lines/curves
of intersection using
inclined/oblique
planes/auxiliary views | • Intersection of right and oblique solids where their axes are parallel to 1 ref plane | Develop/envelop the
surfaces of oblique
prisms, pyramids,
cylinders and cones | | Student Assignment (developing the skills) | Capture images using
a range of media | Analyse design of
everyday objects | Communicate using
rendered freehand
sketches | Generate CAD model
of new/existing designsModify CAD files | Produce exploded CAD models/pictorial views | Photo realistic images
of new/ modified
artefact | Reflect on the learning experiences | | Graphics in Design & Communication | Interpret/generate design briefsDevelop a plan | Display rudiments of
good design –
compare/contrast | Compare/contrast
manual v electronic
graphic communication | • Represent 3D objects in logically arranged 2D views | •Generate multi-view drawings from 3D models | •Use slides or
animations to illustrate
graphic solutions | Evaluate design with
reference to criteria | | Communication of Design | Use standards and conventions | •Create layouts to achieve pleasing presentation | • Use 2D and 3D drawings to communicate ideas | Produce working
drawings/assembly
drawings | • Produce exploded CAD models/pictorial views | Include balloon detailing & annotations | •Design schematic
diagrams to explain
familiar operations | | Freehand Drawing | Develop freehand
sketching techniquesObservation techniques | Produce sketches of
basic solids | Select the most
suitable medium for
producing sketches | • Use various methods of rendering & colouring | • Identify the surfaces of an object relative to one another in 3D | • Analyse the texture and colour of a surface | •Represent graphically the effects of light and shade | | I.C.T. | Create folder and save filesImport / export files | Generate drawings
from part and
assembly models | • Realise the design intent in the CAD models – modify files | • Use CAD models to explore geometric principles | • Generate exploded views & animated sequences | • Transfer images from CAD to ICT packages –make presentation | Collect/manipulate
images to achieve
special effects | | Dynamic Mechanisms | • Involute of circle and regular polygons | Helix and spirals -
tangents | • Construction of loci defined by movement of circles | Loci from linkage
mechanisms | Cam profiles and
displacement
diagrams | • Radial plate cams for in-line rollers and flat followers | Gear profiles Logarithmic spiral | | Structural Form | Historical contextSketch key structural forms | • Produce 2D drawings of arches, domes, vaults etc | Hyperbolic paraboloid
as a ruled surfaceSectional views | Plane directors for
ruled surfaces | Hyperbolic
paraboloid as a
surface translation | •The hyperboloid of revolution, projections & sections | • Geodesic dome of not more than 4 points of frequency | | Geologic Geometry | Basic conceptsInterpolation and plotting of contours | • Finding profiles using vertical sections | • Cutting and embankments for level surfaces | True dip, strike and
thickness of strataOutcrop of strata | • Cutting and embankments for sloping surfaces | Determine the apparent dip of strata | • Solving mining problems with skew boreholes | | Surface Geometry | • Surface developments of containers, roof surfaces and sheet metal fabrications. | • Determine lines and points of intersection between two intersecting surfaces | • Determine dihedral angle between adjacent plane surfaces forming solid objects | Develop intersecting
ductwork involving
prismatic and right
cylindrical surfaces | •Development of transition pieces of circular/circular & rectilinear/rectilinear | Develop intersecting
ductwork involving
prismatic and oblique
cylindrical surfaces | •Development of
transition pieces of
circular/rectilinear
cross section | | Assemblies | Orthographic of
standard components | Sections of standard
componentsLayout & conventions | Single plane section view of an assembly Hatching | Generate CAD modelFully dimensioned drawings | Multipart assemblies
& section views Exploded CAD
model | Balloon detailingIndication of surface finish | • Indicate methods of assembly |